Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exp. Prime Factor Digits Year
111 ~-430
371 ~-430
5312 ~-300
71273 ~-300
11232 1536
11892
1381914 1456
171310716 1588
195242876 1588
23472 1640
231784816
292333 1733
2911034
2920894
31214748364710 1772
372233 1640
376163181779
41133675 1859
411645113539
434313 1733
4397194
4320998637
4723514 1741
4745134
47132645298
Exp. Prime Factor Digits Year
5363614 1867
53694315
53203944018
591799516 1869
612305..69395119 1883
712284796 1909
734393 1733
7322980417
7926874 1856
831673 1732
896189..56211127 1911
97114475 1881
1071622..28812733 1914
11333914 1856
113232795
113659935
11318685697
1271701..10572739 1876
1312633 1733
151181215 1881
151558715
1511657996
15123329517
1631502876 1908
1637041616
Exp. Prime Factor Digits Year
16723490237 1946
1737307536 1912
17315054477
1793593 1733
17914334
181434415 1911
18111641937
18176483377
1913833 1733
193138215038 1960
19774874 1895
211151935 1881
223182875 1881
2231966876
22314664497
22329168417
22915040737 1946
229204927538
23313994 1856
2331356076
2336225776
2394793 1733
23919134
23957374
2391763836
Exp. Prime Factor Digits Year
241220004098 1960
2515033 1733
251542175
263236715 1952
269138222978 1960
27711212977 1957
281809295 1952
28396234 1952
307146089038 1960
31153448477 1957
313109600098 1960
31795114 1952
337181995 1952
33728065377
3539319216 1952
3597193 1952
3598558576
367124795 1952
367517910418
373255691518 1960
38314408477 1957
39723834 1952
39763534
397500235
397539935
Home
1,206,648 digits
e-mail
20.09.13
As an Amazon Associate this site is monetized from qualifying purchases.